64 research outputs found

    All functions g:N-->N which have a single-fold Diophantine representation are dominated by a limit-computable function f:N\{0}-->N which is implemented in MuPAD and whose computability is an open problem

    Full text link
    Let E_n={x_k=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. For any integer n \geq 2214, we define a system T \subseteq E_n which has a unique integer solution (a_1,...,a_n). We prove that the numbers a_1,...,a_n are positive and max(a_1,...,a_n)>2^(2^n). For a positive integer n, let f(n) denote the smallest non-negative integer b such that for each system S \subseteq E_n with a unique solution in non-negative integers x_1,...,x_n, this solution belongs to [0,b]^n. We prove that if a function g:N-->N has a single-fold Diophantine representation, then f dominates g. We present a MuPAD code which takes as input a positive integer n, performs an infinite loop, returns a non-negative integer on each iteration, and returns f(n) on each sufficiently high iteration.Comment: 17 pages, Theorem 3 added. arXiv admin note: substantial text overlap with arXiv:1309.2605. text overlap with arXiv:1404.5975, arXiv:1310.536

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    A decidable policy language for history-based transaction monitoring

    Full text link
    Online trading invariably involves dealings between strangers, so it is important for one party to be able to judge objectively the trustworthiness of the other. In such a setting, the decision to trust a user may sensibly be based on that user's past behaviour. We introduce a specification language based on linear temporal logic for expressing a policy for categorising the behaviour patterns of a user depending on its transaction history. We also present an algorithm for checking whether the transaction history obeys the stated policy. To be useful in a real setting, such a language should allow one to express realistic policies which may involve parameter quantification and quantitative or statistical patterns. We introduce several extensions of linear temporal logic to cater for such needs: a restricted form of universal and existential quantification; arbitrary computable functions and relations in the term language; and a "counting" quantifier for counting how many times a formula holds in the past. We then show that model checking a transaction history against a policy, which we call the history-based transaction monitoring problem, is PSPACE-complete in the size of the policy formula and the length of the history. The problem becomes decidable in polynomial time when the policies are fixed. We also consider the problem of transaction monitoring in the case where not all the parameters of actions are observable. We formulate two such "partial observability" monitoring problems, and show their decidability under certain restrictions

    Integer Polynomial Optimization in Fixed Dimension

    Full text link
    We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytope, we show an algorithm to compute lower and upper bounds for the optimal value. For polynomials that are non-negative over the polytope, these sequences of bounds lead to a fully polynomial-time approximation scheme for the optimization problem.Comment: In this revised version we include a stronger complexity bound on our algorithm. Our algorithm is in fact an FPTAS (fully polynomial-time approximation scheme) to maximize a non-negative integer polynomial over the lattice points of a polytop

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1

    Reachability problems for products of matrices in semirings

    Get PDF
    We consider the following matrix reachability problem: given rr square matrices with entries in a semiring, is there a product of these matrices which attains a prescribed matrix? We define similarly the vector (resp. scalar) reachability problem, by requiring that the matrix product, acting by right multiplication on a prescribed row vector, gives another prescribed row vector (resp. when multiplied at left and right by prescribed row and column vectors, gives a prescribed scalar). We show that over any semiring, scalar reachability reduces to vector reachability which is equivalent to matrix reachability, and that for any of these problems, the specialization to any r2r\geq 2 is equivalent to the specialization to r=2r=2. As an application of this result and of a theorem of Krob, we show that when r=2r=2, the vector and matrix reachability problems are undecidable over the max-plus semiring (Z{},max,+)(Z\cup\{-\infty\},\max,+). We also show that the matrix, vector, and scalar reachability problems are decidable over semirings whose elements are ``positive'', like the tropical semiring (N{+},min,+)(N\cup\{+\infty\},\min,+).Comment: 21 page

    Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers

    Full text link
    We prove decidability of univariate real algebra extended with predicates for rational and integer powers, i.e., (xnQ)(x^n \in \mathbb{Q}) and (xnZ)(x^n \in \mathbb{Z}). Our decision procedure combines computation over real algebraic cells with the rational root theorem and witness construction via algebraic number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated Deduction, 2015. Proceedings to be published by Springer-Verla

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    Quantum hypercomputation based on the dynamical algebra su(1,1)

    Full text link
    An adaptation of Kieu's hypercomputational quantum algorithm (KHQA) is presented. The method that was used was to replace the Weyl-Heisenberg algebra by other dynamical algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined generalized coherent states. We have selected the Lie algebra su(1,1)\mathfrak{su}(1,1), due to that this algebra posses the necessary characteristics for to realize the hypercomputation and also due to that such algebra has been identified as the dynamical algebra associated to many relatively simple quantum systems. In addition to an algebraic adaptation of KHQA over the algebra su(1,1)\mathfrak{su}(1,1), we presented an adaptations of KHQA over some concrete physical referents: the infinite square well, the infinite cylindrical well, the perturbed infinite cylindrical well, the P{\"o}sch-Teller potentials, the Holstein-Primakoff system, and the Laguerre oscillator. We conclude that it is possible to have many physical systems within condensed matter and quantum optics on which it is possible to consider an implementation of KHQA.Comment: 25 pages, 1 figure, conclusions rewritten, typing and language errors corrected and latex format changed minor changes elsewhere and

    Computing the Noncomputable

    Get PDF
    We explore in the framework of Quantum Computation the notion of computability, which holds a central position in Mathematics and Theoretical Computer Science. A quantum algorithm that exploits the quantum adiabatic processes is considered for the Hilbert's tenth problem, which is equivalent to the Turing halting problem and known to be mathematically noncomputable. Generalised quantum algorithms are also considered for some other mathematical noncomputables in the same and of different noncomputability classes. The key element of all these algorithms is the measurability of both the values of physical observables and of the quantum-mechanical probability distributions for these values. It is argued that computability, and thus the limits of Mathematics, ought to be determined not solely by Mathematics itself but also by physical principles.Comment: Extensively revised and enlarged with: 2 new subsections, 4 new figures, 1 new reference, and a short biography as requested by the journal edito
    corecore